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Parameter in the Horseshoe Prior
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INTRODUCTION

» The horseshoe prior [1] has proven to be a notewor-
thy choice for sparse Bayesian estimation, being a com-
putationally convenient alternative to the spike-and-slab
prior.

» The level of sparsity is determined by the global shrink-
age hyperparameter.

» However, we demonstrate that the results can be sensi-
tive to the hyperprior choice for this parameter.

» We show how one can specify this hyperprior based on
the prior beliefs about the number of nonzero parame-
ters in the model.

» We show that one can improve the parameter estima-
tion and predictive accuracy by transforming even a
crude prior guess about the sparsity into the model us-
ing our framework.

HORSESHOE PRIOR

» Consider the standard linear regression model

y,'=,3TX,'+8,', 6,’NN(O,O’2), i=1,...,n,

where X is the D-dimensional vector of predictors, 3 de-
notes the corresponding coefficients and o2 is the noise
variance.

» The horseshoe prior for the regression coefficients

B = (B4, ---, Bp) is given by
/%’Aﬁ7‘mJN(O,Af72)

A~ C*(0,1), @D

j=1,..,D.

» Given the hyperparameters )\; and 7, and assuming
uncorrelated predictors (with zero mean and unit vari-
ance), the posterior mean satisfies approximately

- R 1
Bj=0 = r)bj,  rj= 1+ na_sz)\j?'

(2)

» Here (3 is the maximum likelihood solution and x; the
shrinkage factor.

» The prior for each shrinkage factor «; looks like a horse-
shoe:

Density for the shrinkage

factor x; (Eq. (2)) for the

horseshoe prior (Eq. (1))

when no=272 = 1 (solid)

. : and when no 272 =0.1
"""""" (dashed).

» Intuition: we expect both relevant (5; ~ ;) and irrele-
vant (Bj ~ 0) variables; which one is favored, depends
on the global shrinkage .

EFFECT ON PARAMETER ESTIMATES

THE GLOBAL HYPERPARAMETER

CONCLUSIONS

» We define the effective number of nonzero coefficients » We have shown how to specify the hyperprior for
as the global shrinkage parameter in the horseshoe prior
D based on our prior beliefs about the number nonzero pa-
Mett = Y (1= ). (3) rameters in the model.
J=1 » Setting up the prior for 7 based on the prior beliefs re-
» The prior mean and variance for mes can be derived an- garding the sparsity improves the results even when the
alytically prior knowledge is rough.
9 » The presented framework could also be generalized to
E[Me | 7, 0] = ro D other shrinkage priors than the horseshoe
’ 1+70W/n "’ '
—1
Var|me | 7, 0] =21TO @\/_ZD.
(+7o7vn) IMPLEMENTATION
» Thus, if our prior guess for the number of relevant vari-
ables is py, it is reasgnab!e to choose the prior so that » The horseshoe prior is implemented in the R-
E[mets |7, 0] = po, which yields for 7 package rstanarm (https://github.com/stan-dev/
Po O rstanarm).
T0 = . (4) o _
D —po+/n » A demo about model fitting and the subsequent projec-

» This equation captures the relationship between the
global shrinkage parameter and the prior assumptions
about the sparsity, and indicates where p(7) should have
most of its mass.

» It is insightful to visualize the prior imposed on mgg for
different prior choices for 7 by drawing samples for mg
(see the figure below).

» Theoretical result: assuming a true 3, exists, if our prior
guess is py = p. (the true number of relevant variables),
then 7y is asymptotically the optimal choice in terms of
posterior contraction rates and mean squared error in
comparison to the true 3 [2, 3].

» The result (4) can be generalized also to non-Gaussian
observation models by deriving appropriate plug-in val-
ues for o, for instance o = 2 for the logistic regres-

tive variable selection using our R-package projpred
(https://github.com/stan-dev/projpred) can be
found in the vignette https://users.aalto.fi/
~Jjtpiiron/projpred/quickstart.html.
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ILLUSTRATION OF THE PRIOR CHOICE
T =1 7 ~ N* (0, 7'02) T~ C* (O, Tg) T ~ C*(0, 1)
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Various priors for mes: Histograms of prior draws for mess (Eq. (3)) imposed by different
D denotes the total number of variables, and 7y is computed from

prior choices for .

Summary of the microar-
ray cancer datasets (binary
classification) used for the
real world illustrations.

formula (4) assuming n = 100 observations with ¢ = 1 and py = 5 as the prior guess for the
number of relevant variables. Notice how the “uninformative” - ~ C*(0, 1) results in a rather
dubious prior for meg.

EFFECT ON PREDICTIVE ACCURACY AND

2 + 2
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Ovarian cancer dataset: Histograms of prior and posterior samples for 7
(top row) and mes (middle row), and absolute values of the posterior means
for the regression coefficients | Bj| (bottom row) imposed by three different
prior choices for 7. 79 corresponds to a prior guess po = 3 relevant variables

(Eq. (4)).

T ~ C*(0,78) (

Microarray classification datasets: Posterior mean for mg;, mean log predictive density (MLPD) on test data (+
one standard error), and computation time for two priors for the global hyperparameter: 7 ~ N+(O,T§) (red), and
), where 7q is computed from (4) varying pg (horizontal axis). For each curve, the largest pg
corresponds to 79 = 1. For comparison, the dotted line in the middle row plots denotes the MLPD for LASSO.
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