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INTRODUCTION

I The horseshoe prior [1] has proven to be a notewor-
thy choice for sparse Bayesian estimation, being a com-
putationally convenient alternative to the spike-and-slab
prior.

I The level of sparsity is determined by the global shrink-
age hyperparameter.

I However, we demonstrate that the results can be sensi-
tive to the hyperprior choice for this parameter.

I We show how one can specify this hyperprior based on
the prior beliefs about the number of nonzero parame-
ters in the model.

I We show that one can improve the parameter estima-
tion and predictive accuracy by transforming even a
crude prior guess about the sparsity into the model us-
ing our framework.

HORSESHOE PRIOR

I Consider the standard linear regression model

yi = βTxi + εi , εi ∼ N
(
0,σ2), i = 1, ... , n ,

where x is the D-dimensional vector of predictors, β de-
notes the corresponding coefficients and σ2 is the noise
variance.

I The horseshoe prior for the regression coefficients
β = (β1, ... , βD) is given by

βj |λj , τ ∼ N
(
0,λ2

j τ
2),

λj ∼ C+(0, 1) , j = 1, ... , D.
(1)

I Given the hyperparameters λj and τ , and assuming
uncorrelated predictors (with zero mean and unit vari-
ance), the posterior mean satisfies approximately

β̄j = (1− κj)β̂j , κj =
1

1 + nσ−2τ 2λ2
j
. (2)

I Here β̂ is the maximum likelihood solution and κj the
shrinkage factor.

I The prior for each shrinkage factor κj looks like a horse-
shoe:
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Density for the shrinkage
factor κj (Eq. (2)) for the
horseshoe prior (Eq. (1))
when nσ−2τ 2 = 1 (solid)
and when nσ−2τ 2 = 0.1
(dashed).

I Intuition: we expect both relevant (β̄j ≈ β̂j) and irrele-
vant (β̄j ≈ 0) variables; which one is favored, depends
on the global shrinkage τ .

THE GLOBAL HYPERPARAMETER

I We define the effective number of nonzero coefficients
as

meff =
D∑

j=1

(1− κj). (3)

I The prior mean and variance for meff can be derived an-
alytically

E
[
meff | τ ,σ

]
=

τσ−1√n
1 + τσ−1

√
n

D,

Var
[
meff | τ ,σ

]
=

τσ−1√n
2(1 + τσ−1

√
n)2

D.

I Thus, if our prior guess for the number of relevant vari-
ables is p0, it is reasonable to choose the prior so that
E
[
meff | τ ,σ

]
= p0, which yields for τ

τ0 =
p0

D − p0

σ√
n

. (4)

I This equation captures the relationship between the
global shrinkage parameter and the prior assumptions
about the sparsity, and indicates where p(τ ) should have
most of its mass.

I It is insightful to visualize the prior imposed on meff for
different prior choices for τ by drawing samples for meff

(see the figure below).
I Theoretical result: assuming a true β∗ exists, if our prior

guess is p0 = p∗ (the true number of relevant variables),
then τ0 is asymptotically the optimal choice in terms of
posterior contraction rates and mean squared error in
comparison to the true β∗ [2, 3].

I The result (4) can be generalized also to non-Gaussian
observation models by deriving appropriate plug-in val-
ues for σ, for instance σ = 2 for the logistic regres-
sion [3].

CONCLUSIONS

I We have shown how to specify the hyperprior for
the global shrinkage parameter in the horseshoe prior
based on our prior beliefs about the number nonzero pa-
rameters in the model.

I Setting up the prior for τ based on the prior beliefs re-
garding the sparsity improves the results even when the
prior knowledge is rough.

I The presented framework could also be generalized to
other shrinkage priors than the horseshoe.

IMPLEMENTATION

I The horseshoe prior is implemented in the R-
package rstanarm (https://github.com/stan-dev/
rstanarm).

I A demo about model fitting and the subsequent projec-
tive variable selection using our R-package projpred
(https://github.com/stan-dev/projpred) can be
found in the vignette https://users.aalto.fi/

~jtpiiron/projpred/quickstart.html.
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ILLUSTRATION OF THE PRIOR CHOICE
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Various priors for meff: Histograms of prior draws for meff (Eq. (3)) imposed by different
prior choices for τ . D denotes the total number of variables, and τ0 is computed from
formula (4) assuming n = 100 observations with σ = 1 and p0 = 5 as the prior guess for the
number of relevant variables. Notice how the “uninformative” τ ∼ C+(0, 1) results in a rather
dubious prior for meff.

DATASETS

Dataset n D

Ovarian 54 1536
Colon 62 2000
Prostate 102 5966
ALLAML 72 7129

Summary of the microar-
ray cancer datasets (binary
classification) used for the
real world illustrations.

EFFECT ON PARAMETER ESTIMATES
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Ovarian cancer dataset: Histograms of prior and posterior samples for τ
(top row) and meff (middle row), and absolute values of the posterior means
for the regression coefficients |β̄j | (bottom row) imposed by three different
prior choices for τ . τ0 corresponds to a prior guess p0 = 3 relevant variables
(Eq. (4)).

EFFECT ON PREDICTIVE ACCURACY AND

COMPUTATIONAL EFFICIENCY
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Microarray classification datasets: Posterior mean for meff, mean log predictive density (MLPD) on test data (±
one standard error), and computation time for two priors for the global hyperparameter: τ ∼ N+

(
0, τ 2

0

)
(red), and

τ ∼ C+
(
0, τ 2

0

)
(yellow), where τ0 is computed from (4) varying p0 (horizontal axis). For each curve, the largest p0

corresponds to τ0 = 1. For comparison, the dotted line in the middle row plots denotes the MLPD for LASSO.
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