On the Hyperprior Choice for the Global Shrinkage Parameter in the Horseshoe Prior

Juho Piironen, Aki Vehtari
Helsinki Institute for Information Technology, HIIT
Department of Computer Science, Aalto University
juho.piironen@aalto.fi

AISTATS, 2017

Introduction

- Sparse estimation: large number of parameters $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{D}\right)$, assume only a few are nonzero
- Regression/classification with many candidate predictors
- Example dataset: Leukemia classification $D=7129, n=72$
- Non-Bayesian approaches: LASSO, elastic net etc.
- Bayesian approach: sparsifying prior + integrate over uncertainty

Introduction

- Sparse estimation: large number of parameters $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{D}\right)$, assume only a few are nonzero
- Regression/classification with many candidate predictors
- Example dataset: Leukemia classification $D=7129, n=72$
- Non-Bayesian approaches: LASSO, elastic net etc.
- Bayesian approach: sparsifying prior + integrate over uncertainty
- Horseshoe prior
- Continuous shrinkage prior
- Computationally convenient alternative to the spike-and-slab, with similar or better performance

Introduction

- Sparse estimation: large number of parameters $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{D}\right)$, assume only a few are nonzero
- Regression/classification with many candidate predictors
- Example dataset: Leukemia classification $D=7129, n=72$
- Non-Bayesian approaches: LASSO, elastic net etc.
- Bayesian approach: sparsifying prior + integrate over uncertainty
- Horseshoe prior
- Continuous shrinkage prior
- Computationally convenient alternative to the spike-and-slab, with similar or better performance
- However:
- Previously not clear how to encode prior assumptions about the sparsity to the model (trivial in spike-and-slab)
\Rightarrow This talk

Horseshoe prior

- Linear regression model with many inputs $\mathbf{x}=\left(x_{1}, \ldots, x_{D}\right)$

$$
y_{i}=\beta^{\top} \mathbf{x}_{i}+\varepsilon_{i}, \quad \varepsilon_{i} \sim \mathrm{~N}\left(0, \sigma^{2}\right), \quad i=1, \ldots, n,
$$

Horseshoe prior

- Linear regression model with many inputs $\mathbf{x}=\left(x_{1}, \ldots, x_{D}\right)$

$$
y_{i}=\beta^{\top} \mathbf{x}_{i}+\varepsilon_{i}, \quad \varepsilon_{i} \sim \mathrm{~N}\left(0, \sigma^{2}\right), \quad i=1, \ldots, n
$$

- The horseshoe prior:

$$
\begin{aligned}
\beta_{j} \mid \lambda_{j}, \tau & \sim \mathrm{~N}\left(0, \lambda_{j}^{2} \tau^{2}\right), \\
\lambda_{j} & \sim \mathrm{C}^{+}(0,1), \quad j=1, \ldots, D .
\end{aligned}
$$

Horseshoe prior

- Linear regression model with many inputs $\mathbf{x}=\left(x_{1}, \ldots, x_{D}\right)$

$$
y_{i}=\boldsymbol{\beta}^{\top} \mathbf{x}_{i}+\varepsilon_{i}, \quad \varepsilon_{i} \sim \mathrm{~N}\left(0, \sigma^{2}\right), \quad i=1, \ldots, n
$$

- The horseshoe prior:

$$
\begin{aligned}
\beta_{j} \mid \lambda_{j}, \tau & \sim \mathrm{~N}\left(0, \lambda_{j}^{2} \tau^{2}\right), \\
\lambda_{j} & \sim \mathrm{C}^{+}(0,1), \quad j=1, \ldots, D .
\end{aligned}
$$

- The global parameter τ shrinks all β_{j} towards zero
- The local parameters λ_{j} allow some β_{j} to escape the shrinkage

Horseshoe prior

- Linear regression model with many inputs $\mathbf{x}=\left(x_{1}, \ldots, x_{D}\right)$

$$
y_{i}=\beta^{\top} \mathbf{x}_{i}+\varepsilon_{i}, \quad \varepsilon_{i} \sim \mathrm{~N}\left(0, \sigma^{2}\right), \quad i=1, \ldots, n
$$

- The horseshoe prior:

$$
\begin{aligned}
\beta_{j} \mid \lambda_{j}, \tau & \sim \mathrm{~N}\left(0, \lambda_{j}^{2} \tau^{2}\right), \\
\lambda_{j} & \sim \mathrm{C}^{+}(0,1), \quad j=1, \ldots, D .
\end{aligned}
$$

- The global parameter τ shrinks all β_{j} towards zero
- The local parameters λ_{j} allow some β_{j} to escape the shrinkage

Horseshoe prior

- Given the hyperparameters, the posterior mean satisfies approximately

$$
\bar{\beta}_{j}=\left(1-\kappa_{j}\right) \beta_{j}^{\mathrm{ML}}, \quad \kappa_{j}=\frac{1}{1+n \sigma^{-2} \tau^{2} \lambda_{j}^{2}},
$$

where κ_{j} is the shrinkage factor

Horseshoe prior

- Given the hyperparameters, the posterior mean satisfies approximately

$$
\bar{\beta}_{j}=\left(1-\kappa_{j}\right) \beta_{j}^{\mathrm{ML}}, \quad \kappa_{j}=\frac{1}{1+n \sigma^{-2} \tau^{2} \lambda_{j}^{2}},
$$

where κ_{j} is the shrinkage factor

- With $\lambda_{j} \sim \mathrm{C}^{+}(0,1)$, the prior for κ_{j} looks like:

$$
n \sigma^{-2} \tau^{2}=1.0
$$

We expect both

- relevant ($\bar{\beta}_{j} \approx \beta_{j}^{\text {ML }}$) features
- irrelevant ($\bar{\beta}_{j} \approx 0$) features

Horseshoe prior

- Given the hyperparameters, the posterior mean satisfies approximately

$$
\bar{\beta}_{j}=\left(1-\kappa_{j}\right) \beta_{j}^{\mathrm{ML}}, \quad \kappa_{j}=\frac{1}{1+n \sigma^{-2} \tau^{2} \lambda_{j}^{2}},
$$

where κ_{j} is the shrinkage factor

- With $\lambda_{j} \sim \mathrm{C}^{+}(0,1)$, the prior for κ_{j} looks like:

$$
n \sigma^{-2} \tau^{2}=0.9
$$

We expect both

- relevant ($\bar{\beta}_{j} \approx \beta_{j}^{\text {ML }}$) features
- irrelevant ($\bar{\beta}_{j} \approx 0$) features

Horseshoe prior

- Given the hyperparameters, the posterior mean satisfies approximately

$$
\bar{\beta}_{j}=\left(1-\kappa_{j}\right) \beta_{j}^{\mathrm{ML}}, \quad \kappa_{j}=\frac{1}{1+n \sigma^{-2} \tau^{2} \lambda_{j}^{2}},
$$

where κ_{j} is the shrinkage factor

- With $\lambda_{j} \sim \mathrm{C}^{+}(0,1)$, the prior for κ_{j} looks like:

$$
n \sigma^{-2} \tau^{2}=0.8
$$

We expect both

- relevant ($\bar{\beta}_{j} \approx \beta_{j}^{\text {ML }}$) features
- irrelevant ($\bar{\beta}_{j} \approx 0$) features

Horseshoe prior

- Given the hyperparameters, the posterior mean satisfies approximately

$$
\bar{\beta}_{j}=\left(1-\kappa_{j}\right) \beta_{j}^{\mathrm{ML}}, \quad \kappa_{j}=\frac{1}{1+n \sigma^{-2} \tau^{2} \lambda_{j}^{2}},
$$

where κ_{j} is the shrinkage factor

- With $\lambda_{j} \sim \mathrm{C}^{+}(0,1)$, the prior for κ_{j} looks like:

$$
n \sigma^{-2} \tau^{2}=0.7
$$

We expect both

- relevant $\left(\bar{\beta}_{j} \approx \beta_{j}^{\text {ML }}\right)$ features
- irrelevant ($\bar{\beta}_{j} \approx 0$) features

Horseshoe prior

- Given the hyperparameters, the posterior mean satisfies approximately

$$
\bar{\beta}_{j}=\left(1-\kappa_{j}\right) \beta_{j}^{\mathrm{ML}}, \quad \kappa_{j}=\frac{1}{1+n \sigma^{-2} \tau^{2} \lambda_{j}^{2}},
$$

where κ_{j} is the shrinkage factor

- With $\lambda_{j} \sim \mathrm{C}^{+}(0,1)$, the prior for κ_{j} looks like:

$$
n \sigma^{-2} \tau^{2}=0.6
$$

We expect both

- relevant $\left(\bar{\beta}_{j} \approx \beta_{j}^{\text {ML }}\right)$ features
- irrelevant ($\bar{\beta}_{j} \approx 0$) features

Horseshoe prior

- Given the hyperparameters, the posterior mean satisfies approximately

$$
\bar{\beta}_{j}=\left(1-\kappa_{j}\right) \beta_{j}^{\mathrm{ML}}, \quad \kappa_{j}=\frac{1}{1+n \sigma^{-2} \tau^{2} \lambda_{j}^{2}},
$$

where κ_{j} is the shrinkage factor

- With $\lambda_{j} \sim \mathrm{C}^{+}(0,1)$, the prior for κ_{j} looks like:

$$
n \sigma^{-2} \tau^{2}=0.5
$$

We expect both

- relevant $\left(\bar{\beta}_{j} \approx \beta_{j}^{\text {ML }}\right)$ features
- irrelevant ($\bar{\beta}_{j} \approx 0$) features

Horseshoe prior

- Given the hyperparameters, the posterior mean satisfies approximately

$$
\bar{\beta}_{j}=\left(1-\kappa_{j}\right) \beta_{j}^{\mathrm{ML}}, \quad \kappa_{j}=\frac{1}{1+n \sigma^{-2} \tau^{2} \lambda_{j}^{2}},
$$

where κ_{j} is the shrinkage factor

- With $\lambda_{j} \sim \mathrm{C}^{+}(0,1)$, the prior for κ_{j} looks like:

$$
n \sigma^{-2} \tau^{2}=0.4
$$

We expect both

- relevant $\left(\bar{\beta}_{j} \approx \beta_{j}^{\text {ML }}\right)$ features
- irrelevant ($\bar{\beta}_{j} \approx 0$) features

Horseshoe prior

- Given the hyperparameters, the posterior mean satisfies approximately

$$
\bar{\beta}_{j}=\left(1-\kappa_{j}\right) \beta_{j}^{\mathrm{ML}}, \quad \kappa_{j}=\frac{1}{1+n \sigma^{-2} \tau^{2} \lambda_{j}^{2}},
$$

where κ_{j} is the shrinkage factor

- With $\lambda_{j} \sim \mathrm{C}^{+}(0,1)$, the prior for κ_{j} looks like:

$$
n \sigma^{-2} \tau^{2}=0.3
$$

We expect both

- relevant $\left(\bar{\beta}_{j} \approx \beta_{j}^{\text {ML }}\right)$ features
- irrelevant $\left(\bar{\beta}_{j} \approx 0\right)$ features

Horseshoe prior

- Given the hyperparameters, the posterior mean satisfies approximately

$$
\bar{\beta}_{j}=\left(1-\kappa_{j}\right) \beta_{j}^{\mathrm{ML}}, \quad \kappa_{j}=\frac{1}{1+n \sigma^{-2} \tau^{2} \lambda_{j}^{2}},
$$

where κ_{j} is the shrinkage factor

- With $\lambda_{j} \sim \mathrm{C}^{+}(0,1)$, the prior for κ_{j} looks like:

$$
n \sigma^{-2} \tau^{2}=0.2
$$

We expect both

- relevant $\left(\bar{\beta}_{j} \approx \beta_{j}^{\text {ML }}\right)$ features
- irrelevant $\left(\bar{\beta}_{j} \approx 0\right)$ features

Horseshoe prior

- Given the hyperparameters, the posterior mean satisfies approximately

$$
\bar{\beta}_{j}=\left(1-\kappa_{j}\right) \beta_{j}^{\mathrm{ML}}, \quad \kappa_{j}=\frac{1}{1+n \sigma^{-2} \tau^{2} \lambda_{j}^{2}},
$$

where κ_{j} is the shrinkage factor

- With $\lambda_{j} \sim \mathrm{C}^{+}(0,1)$, the prior for κ_{j} looks like:

$$
n \sigma^{-2} \tau^{2}=0.1
$$

We expect both

- relevant $\left(\bar{\beta}_{j} \approx \beta_{j}^{\text {ML }}\right)$ features
- irrelevant ($\bar{\beta}_{j} \approx 0$) features

Horseshoe prior

- Given the hyperparameters, the posterior mean satisfies approximately

$$
\bar{\beta}_{j}=\left(1-\kappa_{j}\right) \beta_{j}^{\mathrm{ML}}, \quad \kappa_{j}=\frac{1}{1+n \sigma^{-2} \tau^{2} \lambda_{j}^{2}},
$$

where κ_{j} is the shrinkage factor

- With $\lambda_{j} \sim \mathrm{C}^{+}(0,1)$, the prior for κ_{j} looks like:

$$
n \sigma^{-2} \tau^{2}=0.1
$$

We expect both

- relevant $\left(\bar{\beta}_{j} \approx \beta_{j}^{\text {ML }}\right)$ features
- irrelevant ($\bar{\beta}_{j} \approx 0$) features

Small $\tau \Rightarrow$ more coefficients ≈ 0

Horseshoe prior

- Given the hyperparameters, the posterior mean satisfies approximately

$$
\bar{\beta}_{j}=\left(1-\kappa_{j}\right) \beta_{j}^{\mathrm{ML}}, \quad \kappa_{j}=\frac{1}{1+n \sigma^{-2} \tau^{2} \lambda_{j}^{2}},
$$

where κ_{j} is the shrinkage factor

- With $\lambda_{j} \sim \mathrm{C}^{+}(0,1)$, the prior for κ_{j} looks like:

$$
n \sigma^{-2} \tau^{2}=0.1
$$

We expect both

- relevant $\left(\bar{\beta}_{j} \approx \beta_{j}^{\text {ML }}\right)$ features
- irrelevant ($\bar{\beta}_{j} \approx 0$) features

Small $\tau \Rightarrow$ more coefficients ≈ 0 How to specify prior for τ ?

The global shrinkage parameter τ

- Effective number of nonzero coefficients

$$
m_{\mathrm{eff}}=\sum_{j=1}^{D}\left(1-\kappa_{j}\right)
$$

The global shrinkage parameter τ

- Effective number of nonzero coefficients

$$
m_{\mathrm{eff}}=\sum_{j=1}^{D}\left(1-\kappa_{j}\right)
$$

- The prior mean can be shown to be

$$
\mathrm{E}\left[m_{\mathrm{eff}} \mid \tau, \sigma\right]=\frac{\tau \sigma^{-1} \sqrt{n}}{1+\tau \sigma^{-1} \sqrt{n}} D
$$

The global shrinkage parameter τ

- Effective number of nonzero coefficients

$$
m_{\mathrm{eff}}=\sum_{j=1}^{D}\left(1-\kappa_{j}\right)
$$

- The prior mean can be shown to be

$$
\mathrm{E}\left[m_{\mathrm{eff}} \mid \tau, \sigma\right]=\frac{\tau \sigma^{-1} \sqrt{n}}{1+\tau \sigma^{-1} \sqrt{n}} D
$$

- Setting $\mathrm{E}\left[m_{\text {eff }} \mid \tau, \sigma\right]=p_{0}$ (prior guess for the number of nonzero coefficients) yields for τ

$$
\tau_{0}=\frac{p_{0}}{D-p_{0}} \frac{\sigma}{\sqrt{n}}
$$

\Rightarrow Prior guess for τ based on our beliefs about the sparsity

Illustration $p(\tau)$ vs. $p\left(m_{\text {eff }}\right)$

Let $n=100, \quad \sigma=1, \quad p_{0}=5, \quad \tau_{0}=\frac{p_{0}}{D-p_{0}} \frac{\sigma}{\sqrt{n}}, \quad D=$ dimensionality

Illustration $p(\tau)$ vs. $p\left(m_{\text {eff }}\right)$

Let $n=100, \quad \sigma=1, \quad p_{0}=5, \quad \tau_{0}=\frac{p_{0}}{D-p_{0}} \frac{\sigma}{\sqrt{n}}, \quad D=$ dimensionality
$p\left(m_{\text {eff }}\right)$ with different choices of $p(\tau)$:

Illustration $p(\tau)$ vs. $p\left(m_{\text {eff }}\right)$

Let $n=100, \quad \sigma=1, \quad p_{0}=5, \quad \tau_{0}=\frac{p_{0}}{D-p_{0}} \frac{\sigma}{\sqrt{n}}, \quad D=$ dimensionality $p\left(m_{\text {eff }}\right)$ with different choices of $p(\tau)$:

$$
\tau=\tau_{0}
$$

$D=10$

Illustration $p(\tau)$ vs. $p\left(m_{\text {eff }}\right)$

Let $n=100, \quad \sigma=1, \quad p_{0}=5, \quad \tau_{0}=\frac{p_{0}}{D-p_{0}} \frac{\sigma}{\sqrt{n}}, \quad D=$ dimensionality $p\left(m_{\text {eff }}\right)$ with different choices of $p(\tau)$:

$$
\tau=\tau_{0} \quad \tau \sim \mathbf{N}^{+}\left(0, \tau_{0}^{2}\right)
$$

$D=10$

Illustration $p(\tau)$ vs. $p\left(m_{\text {eff }}\right)$

Let $n=100, \quad \sigma=1, \quad p_{0}=5, \quad \tau_{0}=\frac{p_{0}}{D-p_{0}} \frac{\sigma}{\sqrt{n}}, \quad D=$ dimensionality $p\left(m_{\text {eff }}\right)$ with different choices of $p(\tau)$:

$$
\tau=\tau_{0} \quad \tau \sim \mathrm{~N}^{+}\left(0, \tau_{0}^{2}\right) \quad \tau \sim \mathrm{C}^{+}\left(0, \tau_{0}^{2}\right)
$$

$$
D=10
$$

Illustration $p(\tau)$ vs. $p\left(m_{\text {eff }}\right)$

Let $n=100, \quad \sigma=1, \quad p_{0}=5, \quad \tau_{0}=\frac{p_{0}}{D-p_{0}} \frac{\sigma}{\sqrt{n}}, \quad D=$ dimensionality $p\left(m_{\text {eff }}\right)$ with different choices of $p(\tau)$:

Non-Gaussian observation models

- The reference value (reminder):

$$
\tau_{0}=\frac{p_{0}}{D-p_{0}} \frac{\sigma}{\sqrt{n}}
$$

- The framework can be applied also to non-Gaussian observation models by deriving appropriate plug-in values for σ
- Gaussian approximation to the likelihood
- E.g. $\sigma=2$ for logistic regression

Experiments

Table: Summary of the real world datasets, D denotes the number of predictors and n the dataset size.

Dataset	Type	D	n
Ovarian	Classification	1536	54
Colon	Classification	2000	62
Prostate	Classification	5966	102
ALLAML	Classification	7129	72
Corn (4 targets)	Regression	700	80

- Models implemented and posterior inference using Stan ${ }^{1}$.

[^0]
Effect of $p(\tau)$ on parameter estimates

$$
\begin{aligned}
& \text { Ovarian cancer data } \\
& (n=54, D=1536) .
\end{aligned}
$$

Choose τ_{0} according to a prior guess $p_{0}=3$.

Effect of $p(\tau)$ on parameter estimates

$$
\tau \sim \mathrm{N}^{+}\left(0, \tau_{0}^{2}\right)
$$

τ

Ovarian cancer data ($n=54, D=1536$).

Choose τ_{0} according to a prior guess $p_{0}=3$.

Prior and posterior samples for τ and $m_{\text {eff }}$, and absolute posterior mean coefficients $\left|\bar{\beta}_{j}\right|$.

Effect of $p(\tau)$ on parameter estimates

$$
\tau \sim \mathrm{N}^{+}\left(0, \tau_{0}^{2}\right) \quad \tau \sim \mathrm{C}^{+}\left(0, \tau_{0}^{2}\right)
$$

τ

Variable j

τ

Ovarian cancer data ($n=54, D=1536$).

Choose τ_{0} according to a prior guess $p_{0}=3$.

Prior and posterior samples for τ and $m_{\text {eff }}$, and absolute posterior mean coefficients $\left|\bar{\beta}_{j}\right|$.

Effect of $p(\tau)$ on parameter estimates

Effect of $p(\tau)$ on prediction accuracy (1/2)

$\tau \sim \mathrm{N}^{+}\left(0, \tau_{0}^{2}\right)$ (red) and $\tau \sim \mathrm{C}^{+}\left(0, \tau_{0}^{2}\right)$ (yellow),
for various p_{0} transformed into τ_{0} (largest p_{0} corresponds to $\tau_{0}=1$).

Effect of $p(\tau)$ on prediction accuracy (1/2)

Ovarian

$\tau \sim \mathrm{N}^{+}\left(0, \tau_{0}^{2}\right)$ (red) and $\tau \sim \mathrm{C}^{+}\left(0, \tau_{0}^{2}\right)$ (yellow),
for various p_{0} transformed into τ_{0} (largest p_{0} corresponds to $\tau_{0}=1$).
Posterior mean $\bar{m}_{\text {eff }}$, mean log predictive density (MLPD) on test data (dashed line denotes LASSO), and computation time.

Effect of $p(\tau)$ on prediction accuracy (1/2)

$\tau \sim \mathrm{N}^{+}\left(0, \tau_{0}^{2}\right)$ (red) and $\tau \sim \mathrm{C}^{+}\left(0, \tau_{0}^{2}\right)$ (yellow),
for various p_{0} transformed into τ_{0} (largest p_{0} corresponds to $\tau_{0}=1$).
Posterior mean $\bar{m}_{\text {eff }}$, mean log predictive density (MLPD) on test data (dashed line denotes LASSO), and computation time.

Effect of $p(\tau)$ on prediction accuracy (1/2)

Posterior mean $\bar{m}_{\text {eff }}$, mean log predictive density (MLPD) on test data (dashed line denotes LASSO), and computation time.

Effect of $p(\tau)$ on prediction accuracy (1/2)

$\tau \sim \mathrm{N}^{+}\left(0, \tau_{0}^{2}\right)$ (red) and $\tau \sim \mathrm{C}^{+}\left(0, \tau_{0}^{2}\right)$ (yellow),
for various p_{0} transformed into τ_{0} (largest p_{0} corresponds to $\tau_{0}=1$).
Posterior mean $\bar{m}_{\text {eff }}$, mean log predictive density (MLPD) on test data (dashed line denotes LASSO), and computation time.

Effect of $p(\tau)$ on prediction accuracy (2/2)

$\tau \sim \mathrm{N}^{+}\left(0, \tau_{0}^{2}\right)$ (red) and $\quad \tau \sim \mathrm{C}^{+}\left(0, \tau_{0}^{2}\right)$ (yellow),
for various p_{0} transformed into τ_{0} (largest p_{0} corresponds to $\tau_{0}=1$).
Posterior mean $\bar{m}_{\text {eff }}$, mean log predictive density (MLPD) on test data (dashed line denotes LASSO), and computation time.

Summary

- The global shrinkage parameter τ effectively determines the level of sparsity
- The prior for $p(\tau)$ can have a significant effect on the inference results
- "Uninformative" $\tau \sim \mathrm{C}^{+}(0,1)$ often poor choice
- Our framework allows the user to calibrate the prior for τ based on the prior beliefs about the sparsity
- The concept of effective number of nonzero regression coefficients $m_{\text {eff }}$ could be applied also to other shrinkage priors

Implementation

- Horseshoe prior is implemented at least in R-packages rstanarm and brms
- Both allow prior specification for the global parameter τ
- Demo about the model fitting and the subsequent projective variable selection using our R-package projpred:
https://users.aalto.fi/~jtpiiron/projpred/quickstart.html

[^0]: ${ }^{1}$ http://mc-stan.org/

